Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 581
Filtrar
1.
Heliyon ; 10(7): e28438, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560236

RESUMO

Over the past decade, food safety has become a major concern due to the intensive use of pesticides. Pesticide contamination has been observed in poultry products when seeds are coated with pesticides or when stored products are exposed to pesticides in warehouses. In this experiment, the residue levels of malathion transferred from corn grain to the different parts of the chicken product, its transfer factors (TFs) and the human dietary risk for consumers were evaluated. Growth performance and carcass parameters of the chicken samples were also determined after different doses of malathion exposure. Malathion residues from different parts of chicken meat (breast, thigh, wing, liver and skin) were extracted by the QuEChERS method and analyzed by liquid chromatography-mass spectrophotometry (LC-MS/MS). A deterministic approach was used to calculate the acute and chronic risk assessment. Body weight, feed conversion ratio and feed intake decreased with increasing malathion dose. In addition to reduced feed intake, cold carcass and liver weights of the chicks were also decreased. The highest residues were found in the skin of the chicken followed by the breast, thigh, wing and liver. The TFs of malathion varied between 0.00 and 0.05 according to the different doses applied (4 mg/kg, 8 mg/kg, 16 mg/kg, 32 mg/kg). The chronic exposure assessment (HQ) showed that consumers of all ages and genders consumed 0.008-0.604% of the acceptable daily intake (0.3 mg/kg body weight (bw)/day) of malathion from chicken products. The acute intake assessment (aHQ) of consumers ranged from 0.00015 to 0.0135% of the acute reference dose (0.3 mg/kg bw). In conclusion the results suggest that the risk associated with the malathion residues in chicken meat was found to be low but the residue levels in meat should not be ignored.

2.
Heliyon ; 10(7): e28314, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38571604

RESUMO

Maize tortilla is the best-recognized food product of Mexican gastronomy. Artisanal maize tortillas (AMT) are prepared with native maize varieties and a traditional process. The aims of this study were to identify sensory attributes, texture, and color in AMT that allow them to be differentiated from commercial tortillas, and to determine the chemical and mineral composition of both types of tortillas. Six landraces related to four Mexican maize races were used. Two commercial tortillas were included as references (tortillería and supermarket). Tortillas were subjected to sensory analysis by the modified Flash technique, texture and color were measured objectively and chemical and mineral analysis of all tortillas were evaluated. Lime taste and lime smell attributes were relevant to differentiate AMT from commercial tortillas; aftertaste and fracturability attributes were highly associated to supermarket tortillas. The fracturability attribute of tortillas is consider undesirable for taco preparation. Five of the six AMT were characterized by the presence of a layer, a characteristic that is associated with traditional tortilla made by Mexican consumer. Regarding chemical composition, supermarket tortillas exhibited the highest dietary fiber content (17.09%), but showed 30% more Na than AMT, with the exception of tortillas from Purepecha native variety. Besides, supermarket tortilla had 48.9% less Ca than AMT. The sensory attributes relevant to differentiate native maize tortillas from the commercial maize tortilla references were appearance, smell, and taste, while textural and color attributes played a lesser role.

3.
Plant J ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38569011

RESUMO

MicroRNAs are known to play a crucial role in plant development and physiology and become a target for investigating the regulatory mechanism underlying plant low phosphate tolerance. ZmmiR528 has been shown to display significantly different expression levels between wild-type and low Pi-tolerant maize mutants. However, its functional role in maize low Pi tolerance remains unknown. In the present study, we studied the role and underlying molecular mechanism of miR528 in maize with low Pi tolerance. Overexpression of ZmmiR528 in maize resulted in impaired root growth, reduced Pi uptake capacity and compromised resistance to Pi deficiency. By contrast, transgenic maize plants suppressing ZmmiR528 expression showed enhanced low Pi tolerance. Furthermore, ZmLac3 and ZmLac5 which encode laccase were identified and verified as targets of ZmmiR528. ZmLac3 transgenic plants were subsequently generated and were also found to play key roles in regulating maize root growth, Pi uptake and low Pi tolerance. Furthermore, auxin transport was found to be potentially involved in ZmLac3-mediated root growth. Moreover, we conducted genetic complementary analysis through the hybridization of ZmmiR528 and ZmLac3 transgenic plants and found a favorable combination with breeding potential, namely anti-miR528:ZmLac3OE hybrid maize, which exhibited significantly increased low Pi tolerance and markedly alleviated yield loss caused by low Pi stress. Our study has thus identified a ZmmiR528-ZmLac3 module regulating auxin transport and hence root growth, thereby determining Pi uptake and ultimately low Pi tolerance, providing an effective approach for low Pi tolerance improvement through manipulating the expression of miRNA and its target in maize.

4.
Plant Physiol ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38636101

RESUMO

Lodging restricts growth, development, and yield formation in maize (Zea mays L.). Shorter internode length is beneficial for lodging tolerance. However, although brassinosteroids (BRs) and jasmonic acid (JA) are known to antagonistically regulate internode growth, the underlying molecular mechanism is still unclear. In this study, application of the JA mimic coronatine (COR) inhibited basal internode elongation at the jointing stage and repressed expression of the cell wall-related gene XYLOGLUCAN ENDOTRANSGLUCOSYLASE/HYDROLASE 1 (ZmXTH1), whose overexpression in maize plants promotes internode elongation. We demonstrated that the basic helix-loop-helix (bHLH) transcription factor ZmbHLH154 binds directly to the ZmXTH1 promoter and induces its expression, whereas the bHLH transcription factor ILI1 BINDING BHLH 1 (ZmIBH1) inhibits this transcriptional activation by forming a heterodimer with ZmbHLH154. Overexpressing ZmbHLH154 led to longer internodes, whereas zmbhlh154 mutants had shorter internodes than the wild type. The core JA-dependent transcription factors ZmMYC2-4 and ZmMYC2-6 interacted with BRASSINAZOLE RESISTANT 1 (ZmBZR1), a key factor in BR signaling, and these interactions eliminated the inhibitory effect of ZmBZR1 on its downstream gene ZmIBH1. Collectively, these results reveal a signaling module in which JA regulates a bHLH network by attenuating BR signaling to inhibit ZmXTH1 expression, thereby regulating cell elongation in maize.

5.
BMC Complement Med Ther ; 24(1): 162, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632534

RESUMO

The incidence of dementia is rising, with neuronal cell death from oxidative stress and apoptosis recognized as a significant contributor to its development. However, effective strategies to combat this condition are lacking, necessitating further investigation. This study aimed to assess the potential of an anthocyanin-rich extract from Zea mays L. var. ceratina (AZC) in alleviating neuronal cell death.Neurotoxicity was induced in SH-SY5Y cells using hydrogen peroxide (H2O2) at a concentration of 200 µM. Cells were pretreated with varying doses (31.25 and 62.5 µg/mL) of AZC. Cell viability was assessed using the MTT assay, and molecular mechanisms including reactive oxygen species (ROS) levels, antioxidant enzyme activities (catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px)), malondialdehyde (MDA) levels for oxidative stress, and the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2), cAMP response element-binding protein (CREB), and apoptotic factors (B-cell lymphoma 2 (Bcl-2), caspase 3) were explored.Results showed that AZC significantly improved cell viability, reduced ROS production and MDA levels, and downregulated caspase 3 expression. It enhanced CAT, SOD, and GSH-Px activities, activated ERK1/2 and CREB, and upregulated Bcl-2 expression. These findings support the neuroprotective effects of AZC, suggesting it activates ERK1/2, leading to CREB activation and subsequent upregulation of Bcl-2 expression while suppressing caspase 3. AZC may mitigate neuronal cell death by reducing ROS levels through enhanced scavenging enzyme activities.In conclusion, this study underscores the potential of AZC as a neuroprotective agent against neuronal cell death. However, further investigations including toxicity assessments, in vivo studies, and clinical trials are necessary to validate its benefits in neuroprotection.


Assuntos
Neuroblastoma , Fármacos Neuroprotetores , Humanos , Animais , Abelhas , Peróxido de Hidrogênio/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Caspase 3/metabolismo , Antocianinas , Zea mays/metabolismo , Linhagem Celular Tumoral , Morte Celular , Antioxidantes/farmacologia , Fármacos Neuroprotetores/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Superóxido Dismutase/metabolismo
6.
Heliyon ; 10(8): e29555, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38660240

RESUMO

Zea mays L is a crucial crop for Brazil, ranking second in terms of production and sixth in terms of exports. In Brazil, the second season, or off-season, accounts for 80 % of the overall maize output, which primarily occurs after the soybean main season. A maize yield forecast model for the off-season was developed and implemented throughout Brazilian territory due to its importance to the country's economy and food security. The model was built using multiple linear regressions that connected outputs simulated from a land surface model used in large-scale analysis for agriculture (JULES-crop), to agrometeorological indicators. The application of the developed model occurred every 10 days from the sowing until the maturation. A comparison of the forecasting model was verified with the official off-season maize yields for the years 2003-2016. Agrometeorological indicators during the reproductive phase accounted for 60 % of the interannual variability in maize production. When outputs simulated by JULES-crop were included, the forecasting model achieved Nash-Sutcliffe modeling efficiency (EF) of 0.77 in the maturation and EF = 0.72 in the filling-grain stage, suggesting that this approach can generate useful predictions for final maize yield beginning on the 80th day of the cycle. Outputs of JULES crop enhanced modeling performance during the vegetative stage, reducing the standard deviation error in prediction from 0.59 to 0.49 Mg ha-1.

7.
Plant Physiol Biochem ; 210: 108623, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38626656

RESUMO

Folates are essential to the maintenance of normal life activities in almost all organisms. Proton-coupled folate transporter (PCFT), belonging to the major facilitator superfamily, is one of the three major folate transporter types widely studied in mammals. However, information about plant PCFTs is limited. Here, a genome-wide identification of maize PCFTs was performed, and two PCFTs, ZmMFS_1-62 and ZmMFS_1-73, were functionally investigated. Both proteins contained the typical 12 transmembrane helixes with N- and C-termini located in the cytoplasm, and were localized in the plasma membrane. Molecular docking analysis indicated their binding activity with folates via hydrogen bonding. Interference with ZmMFS_1-62 and ZmMFS_1-73 in maize seedlings through virus-induced gene silencing disrupted folate homeostasis, mainly in the roots, and reduced tolerance to drought and salt stresses. Moreover, a molecular chaperone protein, ZmHSP20, was found to interact with ZmMFS_1-62 and ZmMFS_1-73, and interference with ZmHSP20 in maize seedlings also led to folate disruption and increased sensitivity to drought and salt stresses. Overall, this is the first report of functional identification of maize PCFTs, which play essential roles in salt and drought stress tolerance, thereby linking folate metabolism with abiotic stress responses in maize.

8.
J Agric Food Chem ; 72(12): 6327-6338, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38484116

RESUMO

The present work aimed to characterize the phenolic and antioxidant content of the Argentinian purple maize "Moragro" cultivar. Additionally, the INFOGEST simulated in vitro digestion model was used to establish the effect of digestion on bioactive compounds. Finally, digestion samples were used to treat Caco-2 cells in the transwell model to better understand their bioavailability. Twenty-six phenolic compounds were found in purple maize cv. "Moragro", 15 nonanthocyanins and 11 anthocyanins. Several compounds were identified in maize for the first time, such as pyrogallol, citric acid, gallic acid, kaempferol 3-(6″-ferulylglucoside), and kaempferol 3-glucuronide. Anthocyanins accounted for 24.9% of total polyphenols, with the predominant anthocyanin being cyanidin-3-(6″ malonylglucoside). Catechin-(4,8)-cyanidin-3,5-diglucoside and catechin-(4,8)-cyanidin-3-malonylglucoside-5-glucoside were detected as characteristics of this American maize variety. Total polyphenol content (TPC; by the Folin-Ciocalteu method), HPLC-DAD/MSMS, and antioxidant activity [by DPPH and ferric-reducing antioxidant power (FRAP)] were evaluated throughout in vitro digestion. TPC, DPPH, and FRAP results were 2.71 mg gallic acid equivalents (GAE)/g, 24 µmol Trolox equiv/g, and 22 µmol Trolox eq/g, respectively. The in vitro digestion process did not cause significant differences in TPC. However, the antioxidant activity was significantly decreased. Moreover, the bioavailability of anthocyanins was studied, showing that a small fraction of polyphenols in their intact form was conserved at the end of digestion. Finally, a protective effect of digested maize polyphenols was observed in the Caco-2 cell viability. The results suggest that "Moragro" purple maize is a good source of bioavailable anthocyanins in the diet and an interesting source of this group of compounds for the food industry.


Assuntos
Antocianinas , Catequina , Humanos , Antocianinas/química , Zea mays/química , Antioxidantes , Células CACO-2 , Quempferóis , Cromatografia Líquida de Alta Pressão , Fenóis/química , Polifenóis/análise , Ácido Gálico , Digestão
9.
Biomolecules ; 14(3)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38540758

RESUMO

Pigmented corn is a gramineae food of great biological, cultural and nutritional importance for many Latin American countries, with more than 250 breeds on the American continent. It confers a large number of health benefits due to its diverse and abundant bioactive compounds. In this narrative review we decided to organize the information on the nutrients, bioactive compounds and phytochemicals present in pigmented corn, as well as their effects on human health. Phenolic compounds and anthocyanins are some of the most studied and representative compounds in these grasses, with a wide range of health properties, mainly the reduction of pro-oxidant molecules. Carotenoids are a group of molecules belonging to the terpenic compounds, present in a large number of pigmented corn breeds, mainly the yellow ones, whose biological activity incorporates a wide spectrum. Bioactive peptides can be found in abundance in corn, having very diverse biological effects that include analgesic, opioid and antihypertensive activities. Other compounds with biological activity found in pigmented corn are resistant starches, some fatty acids, phytosterols, policosanols, phospholipids, ferulic acid and phlobaphenes, as well as a great variety of vitamins, elements and fibers. This review aims to disseminate and integrate the existing knowledge on compounds with biological activity in pigmented corn in order to promote their research, interest and use by scientists, nutrition professionals, physicians, industries and the general population.


Assuntos
Antioxidantes , Zea mays , Humanos , Antioxidantes/química , Zea mays/química , Antocianinas/farmacologia , Melhoramento Vegetal , Carotenoides/farmacologia
10.
Int J Mol Sci ; 25(6)2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38542154

RESUMO

Leaf angle (LA) is one of the core agronomic traits of maize, which controls maize yield by affecting planting density. Previous studies have shown that the KN1 gene is closely related to the formation of maize LA, but its specific mechanism has not been fully studied. In this study, phenotype investigation and transcriptomic sequencing were combined to explore the mechanism of LA changes in wild type maize B73 and mutant kn1 under exogenous auxin (IAA) and abscisic acid (ABA) treatment. The results showed that the effect of exogenous phytohormones had a greater impact on the LA of kn1 compared to B73. Transcriptome sequencing showed that genes involved in IAA, gibberellins (GAs) and brassinosteroids (BRs) showed different differential expression patterns in kn1 and B73. This study provides new insights into the mechanism of KN1 involved in the formation of maize LA, and provides a theoretical basis for breeding maize varieties with suitable LA.


Assuntos
Proteínas de Plantas , Zea mays , Zea mays/genética , Zea mays/metabolismo , RNA-Seq , Proteínas de Plantas/metabolismo , Melhoramento Vegetal , Fenótipo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de Plantas
11.
Plants (Basel) ; 13(5)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38475468

RESUMO

Drought stress is seriously affecting the growth and production of crops, especially when agricultural irrigation still remains quantitatively restricted in some arid and semi-arid areas. The identification of drought-tolerant genes is important for improving the adaptability of maize under stress. Here, we found that a new member of the actin-depolymerizing factor (ADF) family; the ZmADF5 gene was tightly linked with a consensus drought-tolerant quantitative trait locus, and the significantly associated signals were detected through genome wide association analysis. ZmADF5 expression could be induced by osmotic stress and the application of exogenous abscisic acid. Its overexpression in Arabidopsis and maize helped plants to keep a higher survival rate after water-deficit stress, which reduced the stomatal aperture and the water-loss rate, as well as improved clearance of reactive oxygen species. Moreover, seventeen differentially expressed genes were identified as regulated by both drought stress and ZmADF5, four of which were involved in the ABA-dependent drought stress response. ZmADF5-overexpressing plants were also identified as sensitive to ABA during the seed germination and seedling stages. These results suggested that ZmADF5 played an important role in the response to drought stress.

12.
Sci Rep ; 14(1): 5238, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38433245

RESUMO

Leaf angle, as one of the important agronomic traits of maize, can directly affect the planting density of maize, thereby affecting its yield. Here we used the ZmLPA1 gene mutant lpa1 to study maize leaf angle and found that the lpa1 leaf angle changed significantly under exogenous brassinosteroid (BR) treatment compared with WT (inbred line B73). Transcriptome sequencing of WT and lpa1 treated with different concentrations of exogenous BR showed that the differentially expressed genes were upregulated with auxin, cytokinin and brassinosteroid; Genes associated with abscisic acid are down-regulated. The differentially expressed genes in WT and lpa1 by weighted gene co-expression network analysis (WGCNA) yielded two gene modules associated with maize leaf angle change under exogenous BR treatment. The results provide a new theory for the regulation of maize leaf angle by lpa1 and exogenous BR.


Assuntos
Brassinosteroides , Zea mays , Zea mays/genética , Perfilação da Expressão Gênica , Expressão Gênica , Folhas de Planta/genética
13.
Int J Mol Sci ; 25(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38473942

RESUMO

Plant architecture is one of the key factors affecting maize yield formation and can be divided into secondary traits, such as plant height (PH), ear height (EH), and leaf number (LN). It is a viable approach for exploiting genetic resources to improve plant density. In this study, one natural panel of 226 inbred lines and 150 family lines derived from the offspring of T32 crossed with Qi319 were genotyped by using the MaizeSNP50 chip and the genotyping by sequence (GBS) method and phenotyped under three different environments. Based on the results, a genome-wide association study (GWAS) and linkage mapping were analyzed by using the MLM and ICIM models, respectively. The results showed that 120 QTNs (quantitative trait nucleotides) and 32 QTL (quantitative trait loci) related to plant architecture were identified, including four QTL and 40 QTNs of PH, eight QTL and 41 QTNs of EH, and 20 QTL and 39 QTNs of LN. One dominant QTL, qLN7-2, was identified in the Zhangye environment. Six QTNs were commonly identified to be related to PH, EH, and LN in different environments. The candidate gene analysis revealed that Zm00001d021574 was involved in regulating plant architecture traits through the autophagy pathway, and Zm00001d044730 was predicted to interact with the male sterility-related gene ms26. These results provide abundant genetic resources for improving maize plant architecture traits by using approaches to biological breeding.


Assuntos
Estudo de Associação Genômica Ampla , Zea mays , Zea mays/genética , Melhoramento Vegetal , Mapeamento Cromossômico , Fenótipo , Perfilação da Expressão Gênica , Ligação Genética
14.
Int J Mol Sci ; 25(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38473951

RESUMO

Plant growth exhibits rhythmic characteristics, and gibberellins (GAs) are involved in regulating cell growth, but it is still unclear how GAs crosstalk with circadian rhythm to regulate cell elongation. The study analyzed growth characteristics of wild-type (WT), zmga3ox and zmga3ox with GA3 seedlings. We integrated metabolomes and transcriptomes to study the interaction between GAs and circadian rhythm in mediating leaf elongation. The rates of leaf growth were higher in WT than zmga3ox, and zmga3ox cell length was shorter when proliferated in darkness than light, and GA3 restored zmga3ox leaf growth. The differentially expressed genes (DEGs) between WT and zmga3ox were mainly enriched in hormone signaling and cell wall synthesis, while DEGs in zmga3ox were restored to WT by GA3. Moreover, the number of circadian DEGs that reached the peak expression in darkness was more than light, and the upregulated circadian DEGs were mainly enriched in cell wall synthesis. The differentially accumulated metabolites (DAMs) were mainly attributed to flavonoids and phenolic acid. Twenty-two DAMs showed rhythmic accumulation, especially enriched in lignin synthesis. The circadian DEGs ZmMYBr41/87 and ZmHB34/70 were identified as regulators of ZmHCT8 and ZmBM1, which were enzymes in lignin synthesis. Furthermore, GAs regulated ZmMYBr41/87 and ZmHB34/70 to modulate lignin biosynthesis for mediating leaf rhythmic growth.


Assuntos
Giberelinas , Zea mays , Giberelinas/metabolismo , Zea mays/genética , Lignina/metabolismo , Perfilação da Expressão Gênica , Transcriptoma , Folhas de Planta/metabolismo , Ritmo Circadiano , Regulação da Expressão Gênica de Plantas
15.
Molecules ; 29(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38398559

RESUMO

Popcorn is a specialty maize variety with popping abilities. Although considered a snack, popcorn flakes provide a variety of benefits for the human diet. To evaluate the change in content of bioactive compounds in response to microwave popping, the kernels and flakes of twelve popcorn hybrids were assayed. Accordingly, the content of phytic acid, glutathione, phenolic compounds, carotenoids, and tocopherols, as well as the antioxidant activity, were evaluated. In all evaluated popcorn hybrids, the most pronounced significant average decrease of 71.94% was observed for GSH content, followed by 57.72% and 16.12% decreases for lutein + zeaxanthin and phytic acid content, respectively. In response to popping, in the majority of the evaluated hybrids, the most pronounced significant average changes of a 63.42% increase and a 27.61% decrease were observed for DPPH, followed by a 51.52% increase and a 24.48% decrease for ß-carotene, as well as, a 48.62% increase and a 16.71% decrease for α-Tocopherol content, respectively. The applied principal component and hierarchical cluster analyses revealed the distinct separation of popcorn hybrids' kernels and flakes, indicating the existence of a unique linkage of changes in bioactive compound content in response to popping.


Assuntos
Carotenoides , Ácido Fítico , Humanos , Antioxidantes , beta Caroteno , Tocoferóis , Zea mays/química , Glutationa
16.
GM Crops Food ; 15(1): 15-31, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38238889

RESUMO

Farmers in North America face significant pressure from insects in their maize fields, particularly from corn rootworm (Diabrotica spp.). Research into proteins capable of insecticidal activity has found several produced by ferns. One protein, IPD079Ea, was derived from Ophioglossum pendulum and has shown activity against corn rootworm. An environmental risk assessment was conducted for maize event DP-915635-4, which provides control of corn rootworms via expression of the IPD079Ea protein. This assessment focused on IPD079Ea and characterized potential exposure and hazard to non-target organisms (NTOs). For exposure, estimated environmental concentrations (EECs) were calculated. For hazard, laboratory dietary toxicity studies were conducted with IPD079Ea and surrogate non-target organisms. Environmental risk was characterized by comparing hazard and exposure to calculate the margin of exposure (MOE). Based on the MOE values for DP-915635-4 maize, the IPD079Ea protein is not expected to result in unreasonable adverse effects on beneficial NTO populations at environmentally relevant concentrations.


Assuntos
Besouros , Zea mays , Animais , Zea mays/genética , Zea mays/metabolismo , Endotoxinas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Besouros/genética , Besouros/metabolismo , Medição de Risco
17.
Foods ; 13(2)2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38254495

RESUMO

The growing demand for gluten-free products requires the study of alternatives to produce nutritionally and technologically favorable foods. The aim was to evaluate the content and antioxidant capacity of gluten-free bread enriched with whole flour of purple maize (PM) and how starch and bioaccessibility of antioxidant compounds were modified during in vitro digestion. Gluten-free bread was prepared with the addition of 34%, 50%, and 70% PM, and white maize bread served as control. The content of total polyphenols, anthocyanins, and antioxidant capacity through FRAP and TEAC was measured. Specific volume, crumb texture, and starch digestibility were determined in the breads. Simultaneously, in vitro digestion and dialysis by membrane were performed to evaluate the bioaccessible and potentially bioavailable fraction. Bread with 34% PM had a similar specific volume and crumb texture to the control, but higher content of polyphenols (52.91 mg AG/100 g), anthocyanins (23.13 mg c3-GE/100 g), and antioxidant capacity (3.55 and 5.12 µmol tr/g for FRAP and TEAC, respectively). The PM breads had a higher antioxidant content and capacity and higher slowly digestible and resistant starch than the control. These parameters increased as the PM proportion rose. After digestion, anthocyanins were degraded, polyphenols and antioxidant capacity decreased, but they remained potentially bioavailable, although to a lesser extent. Bread with 34% shows acceptable technological parameters, lower starch digestibility, and contribution of bioactive compounds with antioxidant capacity. This indicates that purple maize flour represents a potential ingredient to produce gluten-free bread with an improved nutritional profile.

18.
Plants (Basel) ; 13(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38256849

RESUMO

Improving sweet-waxy corn hybrids enriched in carotenoids via a hybrid breeding approach may provide an alternative cash crop for growers and provide health benefits for consumers. This study estimates the combining ability and heterosis of sweet-waxy corn hybrids for yield-related traits and carotenoids. Eight super sweet corn and three waxy corn lines were crossed to generate 24 F1 hybrids according to the North Carolina Design II scheme, and these hybrids were evaluated across two seasons of 2021/22. The results showed that both additive and non-additive genetic effects were involved in expressing the traits, but the additive genetic effect was more predominant. Most observed traits exhibited moderate to high narrow-sense heritability. Three parental lines, namely the ILS2 and ILS7 females and the ILW1 male, showed the highest positive GCA effects on yield-related traits, making them desirable for developing high-yielding hybrids. Meanwhile, five parental lines, namely the ILS3, ILS5, and ILS7 females and the ILW1 and ILW2 males, were favorable general combiners for high carotenoids. A tested hybrid, ILS2 × ILW1, was a candidate biofortified sweet-waxy corn hybrid possessing high yields and carotenoids. Heterosis and per se performance were more positively correlated with GCAsum than SCA, indicating that GCAsum can predict heterosis for improving biofortified sweet-waxy corn hybrid enriched in carotenoids. The breeding strategies of biofortified sweet-waxy corn hybrids with high yield and carotenoid content are discussed.

19.
Int J Mol Sci ; 25(2)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38279288

RESUMO

In an intercropping system, the interplay between cereals and legumes, which is strongly driven by the complementarity of below-ground structures and their interactions with the soil microbiome, raises a fundamental query: Can different genotypes alter the configuration of the rhizosphere microbial communities? To address this issue, we conducted a field study, probing the effects of intercropping and diverse maize (Zea mays L.) and bean (Phaseolus vulgaris L., Phaseolus coccineus L.) genotype combinations. Through amplicon sequencing of bacterial 16S rRNA genes from rhizosphere samples, our results unveil that the intercropping condition alters the rhizosphere bacterial communities, but that the degree of this impact is substantially affected by specific genotype combinations. Overall, intercropping allows the recruitment of exclusive bacterial species and enhances community complexity. Nevertheless, combinations of maize and bean genotypes determine two distinct groups characterized by higher or lower bacterial community diversity and complexity, which are influenced by the specific bean line associated. Moreover, intercropped maize lines exhibit varying propensities in recruiting bacterial members with more responsive lines showing preferential interactions with specific microorganisms. Our study conclusively shows that genotype has an impact on the rhizosphere microbiome and that a careful selection of genotype combinations for both species involved is essential to achieve compatibility optimization in intercropping.


Assuntos
Agricultura , Fabaceae , Agricultura/métodos , Zea mays/genética , Raízes de Plantas , Rizosfera , RNA Ribossômico 16S/genética , Fabaceae/genética , Solo , Bactérias/genética , Genótipo , Microbiologia do Solo
20.
Plant J ; 117(4): 1148-1164, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37967146

RESUMO

Nitrogen (N) is an essential factor for limiting crop yields, and cultivation of crops with low nitrogen-use efficiency (NUE) exhibits increasing environmental and ecological risks. Hence, it is crucial to mine valuable NUE improvement genes, which is very important to develop and breed new crop varieties with high NUE in sustainable agriculture system. Quantitative trait locus (QTL) and genome-wide association study (GWAS) analysis are the most common methods for dissecting genetic variations underlying complex traits. In addition, with the advancement of biotechnology, multi-omics technologies can be used to accelerate the process of exploring genetic variations. In this study, we integrate the substantial data of QTLs, quantitative trait nucleotides (QTNs) from GWAS, and multi-omics data including transcriptome, proteome, and metabolome and further analyze their interactions to predict some NUE-related candidate genes. We also provide the genic resources for NUE improvement among maize, rice, wheat, and sorghum by homologous alignment and collinearity analysis. Furthermore, we propose to utilize the knowledge gained from classical cases to provide the frameworks for improving NUE and breeding N-efficient varieties through integrated genomics, systems biology, and modern breeding technologies.


Assuntos
Estudo de Associação Genômica Ampla , Zea mays , Zea mays/genética , Nitrogênio , Melhoramento Vegetal , Produtos Agrícolas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...